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Abstract Recent advances are overviewed which enable
simulation of the voltammetric behaviour of surfaces
which respond in an electrochemically spatially hetero-
geneous fashion. By use of the concept of a ‘‘diffusion
domain’’ computationally expensive three-dimensional
simulations may be reduced to tractable two-dimen-
sional equivalents. In this way the electrochemical re-
sponse of partially blocked electrodes and
microelectrode arrays may be predicted, and are found
to be consistent with experimental data. It is, further-
more, possible to adapt the ‘‘blocked’’ electrode analysis
to enable the voltammetric sizing of inert particles
present on an electrode surface. Finally theory of this
type predicts the voltammetric behaviour of electro-
chemically heterogeneous electrodes—for example
composites whose different spatial zones display con-
trasting electrochemical behaviour toward the same re-
dox couple.

Keywords Heterogeneous electrodes Æ Cyclic
voltammetry Æ Diffusion domain approximation Æ
Microelectrode arrays Æ Partially blocked electrodes

Introduction

Electrodes which are spatially heterogeneous in the
electrochemical sense embrace porous electrodes, par-
tially blocked electrodes, microelectrode arrays, elec-
trodes made of composite materials, and some modified
electrodes [1, 2, 3, 4]. The simulation of electrode re-
sponses at such surfaces is challenging both because of

the surface variation and because of the often random
distribution of the zones of different electrode activity.

Recent simulation advances suggest that the use of
the diffusion domain approach enables reduction of
these complex three-dimensional problems to a readily
tractable two-dimensional form which gives results in
excellent agreement with experiment. The purposes of
this paper are to overview these advances and illustrate
the progress made.

Partially blocked electrodes

Figure 1 illustrates the concept of a partially blocked
electrode. It shows four macro electrodes partially cov-
ered with particles of material distinct from that of the
underlying electrode material. In the following discus-
sion these particles are first assumed to be inert, so that
they partially block the electrode towards electrolytic
reactions. Subsequently they take the form of either
electro-active particles on an inert substrate, as in a
microdisc array or a nano-particle-modified electrode.
As Fig. 1 implies, the particles, be they inert or electro-
active, may take a variety of possible shapes. We have
identified the voltammetric conditions under which this
needs to be addressed in the modelling [3]; except where
explicitly stated, the flat disc approximation was adop-
ted (Fig. 1)

The diffusion domain approximation and partially blocked
electrodes

Figure 2 shows an array of electrically inert blocks
supported on a flat electrochemically active substrate.
The blocks are disc spaced and arranged in a cubic
distribution. Subtly, Fig. 3 shows a similar array except
that the blocks are now randomly distributed over the
electrode surface. It is interesting to consider the
voltammetric behaviour of the simple process
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at such partially blocked electrodes, assuming that the
dynamics follow Butler–Volmer kinetics so that:

ka ¼ ko exp
bF
RT

g

� �
ð1Þ

and

kc ¼ ko exp �
aF
RT

g

� �
ð2Þ

where ko is the standard electrochemical rate constant, a
and b are transfer coefficients such that a+b=1, and g is
the overpotential defined as:

g ¼ E � Eo0
A=B ð3Þ

where E is the electrode potential and Eo0
A=B the formal

potential for the A/B couple.
The cyclic voltammetry response can be discov-

ered [1, 2, 3, 4] by solving the transport equations:

@ A½ �
@t
¼ DAr2 A½ � ð4Þ

and

@ B½ �
@t
¼ DBr2 B½ � ð5Þ

subject to applying Eqs. (1), (2) and (3) as boundary
conditions where the equations:

E ¼ Estart þ tt 0\t\
Eend � Estart

t
ð6Þ

at

E ¼ Eend � t t � Eend � Estartð Þ
t

� �
ð7Þ

define the potential sweep between Estart and Eend with a
voltage sweep rate of t V s�1 and DA and DB are the
diffusion coefficients of A and B, respectively.

The above problem is posed in three spatial dimen-
sions (x, y, and z or their equivalents). Accordingly the

Fig. 2 The diffusion domain
problem for electrically
inert blocks in a cubically
spaced distribution

Fig. 1 Schematic
representation of partially
blocked electrodes shown for
the case of spherical particles
(top left), hemispheres (top
right), cylinders (bottom left)
and flat discs (bottom right)
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solution for regularly distributed blocks is computa-
tionally expensive and that for the random distribution
is essentially intractable. Accordingly we introduce the
diffusion domain approximation.

Figures 2 and 3 illustrate the diffusion domain
approximation for cubic and random arrays respec-
tively. In Fig. 2 it can be seen that the electrode surface
is first split into unit square cells each of the same area.
The diffusion domain approximation involves replacing
this by a circular domain to equal total area. Thus if the
radius of the circular domain is R0, then:

p2 ¼ pR2
o

where p is the centre-to-centre distance between adjacent
blocks or, equally, the length of the side of the square
unit cell. Accordingly:

Ro ¼ 0:564p

similarly, for a hexagonal area of blocks,

Ro ¼ 0:5258p

Having made this approximation the diffusion
equations, Eqs. (4) and (5), are solved within the cylin-
drical unit shown in Fig. 2 where Z is the direction
normal to the electrode surface and R is the radial
coordinate with R0 defining the radius of the cylinder
and Rb the size of the block. Within this approximation
Eqs. (4) and (5) become:

@ A½ �
@t
¼ DA

@2 A½ �
@r2

þ DA

r
@ A½ �
@r
þ DA

@2 A½ �
@z2

ð8Þ

and

@ B½ �
@t
¼ DB

@2 B½ �
@r2

þ DB

r
@ B½ �
@r
þ DB

@2 B½ �
@z2

ð9Þ

and the three dimensional problem is accordingly
transformed into a tractable two dimensional equiva-
lent. In solving, the boundary conditions of ‘‘no flux’’
are imposed on the walls of the cylinder so that each
cylinder is diffusionally independent of it neighbours
and the response of the macroelectrode as a whole is
simply that one single diffusion domain multiplied by
the total number of blocks on the electrode surface.
Figure 3 shows the diffusion domain approximation in
respect of the randomly distributed blocks in the shape
of discs. Here the surface is first decomposed into a set
of Voronoi cells. These are defined as follows. Treat each
N disks present as a point located at the centre of the
disk. Locate the nearest neighbour of every point and
divide the distance between each set of neighbours in
half. Voronoi cells in the shape of polygons are then
formed by linking together all the ‘‘halfway’’ points
surrounding a particular disc. Each disc then occupies its
own Voronoi cell of area An where n represents the
number assigned to the particles (n=1,2...N�1, N) and
the total area of the electrode, Aelec is given by a sum
over the N cells present:

Aelec ¼
XN

n¼1
An ð10Þ

Now consider the walls of a particular unit (Voronoi)
cell. Because the walls are equidistant from the sur-
rounding blocks, the environment on both sides of each
wall will be similar. Thus, little or zero net flux of species
A (or B) will pass through the cell walls. This means that
each cell can be considered diffusionally independent
and to simulate the voltammogram of a modified elec-
trode we simply sum the voltammograms of every unit
cell on the electrode surface. A Voronoi cell is, however,
an awkward and irregular shape to simulate, so we again

Fig. 3 Illustration of blocking
material randomly distributed
over an electrode surface,
and the construction of
Voronoi cells
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make use of the diffusion domain approximation: we
approximate the base of each Voronoi cell as a circle of
the same area containing the same block (Fig. 3). As
illustrated in Fig. 3, this results in a cylindrical unit cell
(a diffusion domain) with radius R0, which is much
easier to simulate. An important property of diffusion
domains is the microscopic coverage, h, given by
Eq. (11):

h ¼ pR2
b

pR2
0

¼ Rb

R0

� �2

ð11Þ

where h is the block coverage [1, 2, 3, 4].
Simulation of the cyclic voltammetry problem for the

random distributed partially blocked electrode then in-
volves solving Eqs. (8) and (9) as above but for a range
of R0 values. In the case of randomly distributed blocks
the nearest neighbours show a Poisson distribution:

P Roð Þ ¼
2pRoN

Aelec
exp

�pR2
oN

Aelec

� �
ð12Þ

where the probability of finding domains of radius R0 is
given by P(R0) and the probability of finding domains of
radius R0+d R0 is given by P(R0)d R0 . The cyclic vol-
tammograms calculated for different R0 must be
weighted accordingly to produce the final voltammo-
gram; Fig. 4 shows the procedure.

The results of the simulation can be illustrated with
reference to the following ‘‘thought experiment’’. We
consider a naked macroelectrode, say of dimension
4 mm · 4 mm, and explore the cyclic voltammetric re-
sponse resulting from an A/B couple with ‘‘typical’’
aqueous solution properties a=0.5, ko=10�2 cm s�1

and DA=DB=10�5 cm2 s�1. We assume a voltage scan
rate of t=0.01 V s�1. The expected voltammogram is
shown in Fig. 5 for a completely unblocked electrode.

We next pose the question: what does the voltammo-
gram look like if the electrode is 50% blocked? In par-
ticular we consider the responses when the blocks are of
different size but in each case the total block coverage is
h=0.5. Figure 5 illustrates these three results—first
when the electrode has a single macro-block of
R0=0.18 cm ( p·0.182=0.5·0.4·0.4), second when the
electrode is covered with 50 lm radius blocks spread
200 lm apart in a cubic array, and third when the
electrode is half covered with 1 lm radius blocks. The
different cyclic voltammetric responses are shown in
Fig. 5. It can be seen that the single macro-block
(R0=0.18 cm) produces a voltammetric response that is
close to giving just one half the current of the unblocked
electrode. In contrast the effect of blocking the electrode
with many 1 lm blocks is tiny; the voltammogram is
only slightly reduced in magnitude in comparison with
the unblocked electrode. The voltammetry seen with the
electrode blocked by 50 lm lies intermediate between
the unblocked and the macroscopically blocked case.

The reason for the contrasting behaviour can be
seen from the consideration of the concentration pro-
files of A with the different diffusion domain of the
three examples. These are shown in Fig. 6. For the
single block there is ‘‘linear’’ diffusion to the active part
of the electrode whilst the concentration of A remains
close to its bulk value over the zone of the block. For
the 50-lm blocks the ‘‘linear’’ diffusion to the active
electrode is augmented by significant radial diffusion
that is sufficient to reduce, but not exhaust, the amount
of A in the block zone. Finally for the 1-lm blocks the
radial diffusion is enough to enable the near complete
electrolysis of all A arriving at the electrode so that the
partially blocked electrode behaves almost like an un-
blocked electrode even though 50% of its surface is not
active!

Fig. 4 Illustration of the steps
involved in the simulation of
cyclic voltammograms for a
random ensemble of diffusion
domains
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It is clear that the voltammograms in Fig. 5 cover a
range of voltammetric behaviour for a heterogeneous
electrode part of which is active and part inert. In fact
four categories of response can be defined and these are
illustrated in Fig. 7. We next discuss each category in
turn.

Case 1

In this limit both the blocked and unblocked surface are
macroscopically ‘‘large’’. Accordingly the unblocked
electrode experiences linear diffusion, as at an ordinary
electrode of the same active dimension, whilst the con-
centration of the electro-active species in the vicinity of
the block is essentially unchanged from that of the bulk
solution. In this limit the voltammogram observed is
simply the same as that measured for an unblocked

electrode of the same size except that the current scale is
reduced by the factor (1�h).

Case 2

In this case the size of the electro-active zones are ‘‘mi-
cro’’ in size but are separated with sufficiently large inert
blocking material such that the electrode as a whole
behaves as a collection of isolated microelectrodes, each
of which experiences convergent diffusion (radial and
axial) as illustrated in Fig. 7.

Case 3

In this situation the electro-active parts of the macro-
electrode behave with ‘‘microelectrode’’ character; their

Fig. 5 The expected
voltammetric responses for
different sized blocks each
corresponding to a total
coverage of h=0.5

Fig. 6 Concentration profiles
of A within different diffusion
domains
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size is such that a convergent diffusion regime is estab-
lished, as in Case 2. However, in Case 3 the scale of the
insulating parts of the electrode is sufficiently small that
the diffusion fields of adjacent electro-active zones begin
to overlap. This case is illustrated by the example of the
50-lm blocks on the 4-mm2 electrode discussed above.

Case 4

This represents the limiting situation of Case 3 where the
diffusion field of the electro-active ‘‘microelectrode’’-
sized zones overlap so heavily that the heterogeneous
electrode as a whole behaves almost like an unblocked
electrode. This situation corresponds to the example of
the 1-lm blocks on the 4 mm2 electrode investigated
above. This limiting case has previously been explained
by Amatore [5] who concluded, and this is now verified
by our simulations [1, 2, 3, 4], that the electrode re-
sponse is exactly that of the unblocked electrode but
calculated for an electrochemical rate constant of (1�h)
multiplied by ko. In other words redox couples with a
Butler–Volmer rate constant of ko have linear diffusion
characteristics at a partially blocked electrode of cov-
erage h but with an apparently reduced electrochemical
rate constant of ko (1�h).

In summary Case 1 and Case 4 limits both show the
characteristics of linear diffusion and as such will gen-
erate votlammograms that can be fitted using commer-
cial simulation programs such as Digisim which apply
one-dimensional diffusion models only. Case 2 presents
the case where the electrode responds as an array of
diffusionally independent microelectrodes. Last, Case 3
is interesting since it generates voltammograms which
can never be simulated on the basis of linear diffusion,

e.g. via Digisim. Figure 8 illustrates an attempt to model
a simulated Case 3 voltammogram using Digisim; the
figure shows the best fit to the forward peak. It is clear
that the Digisim modelling is inadequate for the whole
voltammogram; the reverse peak is too big and the
forward going diffusional tail falls off too quickly. Both
features are indicative of vestigial microelectrode vol-
tammetric characteristics almost, but not fully, lost

Fig. 7 Voltammetric behavior
for a heterogeneous electrode
with active and inert parts,
illustrating Cases 1, 2, 3, and 4.
(see text)

Fig. 8 Attempt to model a Case 3 voltammogram using Digisim
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through the overlapping of adjacent microelectrode
diffusional fields.

How big is ‘‘big’’ and how small is ‘‘small’’? The Einstein
equation provides the answer

In our above analysis of partially blocked electrodes the
difference between macroelectrodes and microelectrodes,
between ‘‘big’’ and ‘‘small’’, was critical. How can we tell
whether the dimensions of the electro-active or inert
zones of heterogeneous electrodes fall into one category
or another (Cases 1, 2, 3 or 4)? Without recourse to
simulation we can answer we such question using the
Einstein equation [6].

The Einstein equation indicates that the approximate
distance, d, diffused by a species with a diffusion coeffi-
cient, D, in a time, t, is:

d ¼
ffiffiffiffiffiffiffiffi
2Dt
p

ð13Þ

In considering the cyclic voltammetry problem above
we can estimate the appropriate value of t, by consid-
ering the appropriate potential ‘‘width’’ of the voltam-
mogram, DE so that:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

DE
t

r
ð14Þ

for a typical nearly ‘‘reversible’’ voltammogram a DE of
the order 0.1 to 0.15 V, as illustrated in Fig. 9.
Accordingly if we return to the concentration profiles
reported in Fig. 6, using the parameters adapted in the
simulations and a value of DE of 0.15 V we can estimate
that:

d � 55 lm

It can be seen that this approximately corresponds to
the thickness of the diffusion layer associated with the
linear diffusion part of the macroelectrode partially
blocked with the single 0.18 cm ‘‘macro block’’ in Fig. 6
(Case 1) and to that in the heavily overlapping diffusion
case for the 1-lm blocks (Case 4). On the other hand,
this value of d roughly corresponds to the size of the
blocks in the case they were assumed to be of 50 lm
radius. Accordingly in this last case Fig. 6 shows sig-
nificant diffusional depletion over the block in this case.
It follows that simply using Eq. (14) to estimate the
diffusional distance, and noting that this is comparable
with the block size, immediately indicates that cyclic
voltammetry conducted at 0.1 V s�1 (as used to generate
Fig. 6) will fall into Class 3. As such it will not be
accurately modelled by assuming linear diffusion (as, for
example, via Digisim).

In conclusion, use of Eq. (14) permits the determi-
nation of Classes 1, 2, 3 and 4 for partially blocked
electrodes; the Einstein equation generates values of d
which ‘‘benchmark’’ whether the electrodes and blocks
are ‘‘big’’ or ‘‘small’’ compared with diffusion layer
thicknesses.

Partially blocked electrodes: results

To test the theory above we lithographically constructed
partially blocked electrodes comprising macroelectrodes
partially covered with inert discs of a fixed size arranged
in either a cubic or hexagonal array [1, 2]. Electrodes
with different coverage and different radii were con-
structed with gold as the electrode material. The oxi-
dation of 1,4-N,N,N¢,N¢-tetramethylphenylenediamine
(TMPD) in acetonitrile was studied as a function of
voltage scan rate with the peak current measured.
Excellent agreement between theory and experiment was
noted [1, 2].

Next, partially blocked electrodes with random arrays
of disc-shaped blocks were fabricated [2]; Fig. 10 shows
a typical electrode. Again variable scan rate voltamme-
try with the TMPD–acetonitrile system was examined to
verify the diffusion domain theory. Figure 11 shows the
measured peak current as a function of the square root
of the voltage scan rate, t. The solid line shows the ex-
pected behaviour for an unblocked electrode; the points
show excellent agreement between theory and experi-
ment for the two different coverages (h) of 0.1 and 0.5.

The above experiments serve to validate the diffusion
domain approximation both in the context of regularly
and randomly heterogeneous electrodes. We have
therefore applied this approach more generally in a
variety of contexts which we now briefly address.

Electrochemical particle sizing

Implicit in the discussion above is the notion that vol-
tammetric measurements made on partially blockedFig. 9 The potential ‘‘width’’ of a voltammogram
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electrode can give us information about the coverage or
size of the material on the surface of an electrode. That
is to say, that in principle, voltammetry has the capa-
bility for particle sizing [7].

To illustrate proof-of-concept we modified an edge-
plane pyrolytic graphite electrode with known masses,
mblock, of monodisperse (approximately spherical) par-
ticles of alumina of diameter 1 lm using the procedure
outlined in Fig. 12. The aqueous ferricyanide/ferrocya-
nide redox couple was used for voltammetric measure-
ments with these modified (blocked) electrodes and with
the corresponding unblocked electrodes. Typical data
are shown in Fig. 13; the effect of an increased mass of
alumina particles on the electrode surface was to reduce
the peak currents while slightly increasing the peak-to-
peak voltage separation. The data were modelled
assuming blocking by monodisperse inert spheres of
radius Rb. For a given radius the number of blocking
particle was calculated as:

Nblock ¼
3mblock

4qpR3
b

ð15Þ

where q is the density of the alumina. Figure 14 shows a
comparison of experiment and theory generated for
different values of Rb. Almost perfect fit is seen for

Fig. 11 The measured peak
current as a function of the
square root of the voltage scan
rate, t, using the experimental
system of TMPD in acetonitrile
to verify the diffusion domain
theory

Fig. 10 A lithographically fabricated partially blocked electrode
with random arrays of discs on the surface
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Rb=0.5 lm corresponding to the known, independently
established, diameter of 1 lm, confirming the scope of
using voltammetry for particle sizing [7].

Another application in which we have used voltam-
metry to estimate the size of inert material on an elec-
trode surface is for material on the surface of
microdroplet-modified electrodes [3, 8, 9, 10, 11, 12, 13,
14, 15, 16]. Here water-insoluble oils form micron or

larger sized droplets—typically on platinum or basal
plane pyrolytic graphite electrodes; the latter are then
immersed in aqueous electrolyte for voltammetry. These
modified electrodes are important in that electro-gener-
ated species (formed at the unblocked part of the elec-
trode) can react at the oil droplet and the kinetics and
mechanism of this interfacial liquid–liquid process can
be investigated. Similarly voltammetric monitoring of
processes with the droplet is possible; for example pho-
to-generated species can be detected [12, 13]. In both
case knowledge of the droplet size is required for mod-
elling and for extraction of quantitative kinetic data.
This can be obtained by means of the methodology
presented above; variable scan-rate voltammetry of
stable, water-soluble redox species which are unreactive
toward the oil droplet are used to provide good esti-
mates of the sizes of the droplets, the latter acting as the
inert blocks on the partially blocked electrode.

Microelectrode arrays

Microelectrode arrays are now widely used in electro-
analysis [17]. Typically they comprise a regular array of
microdisc electrodes separated from each other by a
distance of ten or more diameters; if the latter sepa-
ration if sufficiently large then each microdisc electrode
behaves in a diffusionally independent manner and the
total current response simply reflects that of a single
microdisc multiplied by the number of electrodes
present. On the other hand the merits of randomly
distributed arrays for some applications have also been
noted [18].

Simulation of microdisc arrays to address the key
issue of diffusional independence can easily be achieved
by means of an obvious modification of the theory

Fig. 13 The observed effect on the voltammetric response of
increasing the mass of alumina on the voltammetric response

Fig. 14 Comparison of experiment with theory generated for
different values of Rb

Fig. 12 Procedure for modifying an edge-plane pyrolytic-graphite
electrode with a suspension containing alumina particles for
voltammetric particle sizing
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presented above. The results are in excellent agreement
with experiment. For example, Fig. 15 shows experi-
mental voltammetric results from oxidation of aqueous
ferrocyanide, obtained at a gold microdisc array com-
prising a cubic distribution of 10-lm-diameter discs with
centre-to centre nearest neighbour separations of
100 lm. The expected scan rate-independent sigmoidal
current–voltage characteristics are seen at the higher
scan rates but not below ca 50 mV s�1. Also shown are
the corresponding simulated voltammograms; excellent
agreement between theory and experiment is apparent.
Moreover we can understand the scan rate behaviour on
the basis of Eq. (14). Noting that the block radius (Rb)
in this case is 45 lm we can calculate that for scan rates
of 10 and 25 mV s�1, d has values of 125 and 80 lm
respectively, so for these scan rates the electrode is
showing Case 3 behaviour. In contrast, for a scan rate of
100 mV s�1, d has the value of 40 lm, so this represents
the onset of Case 2 behaviour which is followed at this
scan rate and above.

Electrochemically heterogeneous electrodes

The simplest model of an electrochemically heteroge-
neous electrode (EHE) is shown schematically in
Fig. 16. It is similar in concept to a partially blocked
electrode except that rather than having inert and elec-
tro-active zones, in the EHE both types of zones are
electro-active, albeit with different Butler–Volmer terms,

k01 ; a1
� �

and k02 ; a2
� �

. The simulation of such an elec-

trode proceeds using the diffusional domain approach
such as already explained. The power of the method can
be illustrated with reference to an electrode comprising
gold particles, of known average radius, abrasively at-
tached [19, 20] to an edge-plane pyrolytic-graphite
electrode which has been modified by physical adsorp-
tion of anthraquinone [3]. The effect of the adsorption is
to slow the electron transfer kinetics of the edge-plane
pyrolytic-graphite electrode in respect of the electro-
oxidation of ferrocyanide; the standard rate constant is
measured using a pure, unmodified electrode as
0.0011 cm2 s�1. In contrast, for a pure gold electrode the
rate constant is 0.013 cm2 s�1 for the same process. The
question arises as to what will be the cyclic voltammetric
response of the gold/modified graphite composite elec-
trode?

Fig. 17 shows the cyclic voltammetric response of
ferrocyanide at pure gold and pure anthraquinone-
modified edge-plane pyrolytic-graphite electrodes; the
difference in peak-to-peak potential separation, DEpp

reflects the different electrode kinetics identified above.
We have simulated the response of the composite
electrode for different scan rates and for different
coverages (0 £ h £ 1) of gold on the graphite sur-
face [2]. Figure 18 shows that DEpp changes smoothly
between the limits of pure gold and pure modified
graphite but in a different fashion according to voltage
scan rate. Figure 18 also shows a typical simulated
voltammogram. The results in Fig. 18 can be used to
estimate the coverage of gold from the measured values
of DEpp at different scan rates. The results are shown in
Table 1 and may be compared with SEM images, from
which a coverage of h=0.28 was deduced. The excel-
lent agreement with Table 1 is apparent [3]. It may be
conclude that electrochemically heterogeneous elec-
trodes can be simulated using the diffusion domain
approximation.

Conclusions

The diffusion domain approximation is a powerful ap-
proach enabling accurate simulation of the voltammetric

Fig. 15 The simulation of
microdisc arrays addressing the
issue of diffusional
independence. Shown are
experimental voltammetric
results obtained from oxidation
of 1 mmol L�1 ferrocyanide in
0.1 mol L�1 KCl at a gold
microdisc array comprising a
cubic distribution of 10-lm-
diameter discs with centre-to
centre nearest neighbour
separations of 100 lm. Scan
rates used (from bottom to top
of the curves) were 10, 25, 50,
75, 100, 150, 200 mV s�1

Fig. 16 An electrochemical reaction occurring on the same
electrode surface with different Butler–Volmer characteristics at
different spatial locations
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process at an electrochemically heterogeneous electrode.
In particular the successful simulation of partially
blocked electrodes, of microelectrode arrays, and of
particle-modified (composite) electrodes is noted.
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